Journal of Organometallic Chemistry, 243 (1983) C78–C82 Elsevier Sequoia S.A., Lausanne – Printed in The Netherlands

Preliminary communication

PHOTOCHECHEMISTRY OF TRANSITION-METAL POLYHYDRIDES: DIMERIZATION OF $O_{SH_4}(PMe_2Ph)_3$ FOLLOWING PHOTODISSOCIATION OF DIHYDROGEN

MARK A. GREEN, JOHN C. HUFFMAN and KENNETH G. CAULTON*

Department of Chemistry and Molecular Structure Center, Indiana University, Bloomington, Indiana 47405 (U.S.A.)

(Received September 28th, 1982)

Summary

UV (254 nm) photolysis of OsH_4P_3 ($P \equiv PMe_2Ph$) proceeds, by photodissociation of H_2 , to give the transient OsH_2P_3 . This species exchanges deuterium with C_6D_6 , reacts with phosphine to give cis- H_2OsP_4 , and with OsH_xP_3 to give $Os_2H_2(\mu$ - $H)_2P_6$, whose structure was determined by X-ray diffraction. This Os=Os dimer participates in a unique reversible (25°C) phosphine dissociation equilibrium to produce $Os_2H_4P_5$, containing an $Os\equiv Os$ bond. A structural analog of this dimer was produced by acidolysis of $Os_2H_4P_6$ to give $Os_2H_3P_6^*$, which X-ray diffraction reveals to have a $P_3Os(\mu-H)_3OsP_3^*$ structure.

We [1] and others [2] have remarked on the atypical reactivity pattern (eq. 1) of $\text{ReH}_{5}P_{3}$ (P = PMe₂Ph), as contrasted to other transition metal

$$\operatorname{ReH}_{5}\operatorname{P}_{3} \xrightarrow{h\nu} \operatorname{ReH}_{5}\operatorname{P}_{2} + \operatorname{P}_{5}$$

polyhydrides, which undergo photodissociation of H_2 [3]. We have also suggested that photocondensation of polyhydride monomers may be a general route to polyhydride oligomers [1]. We report here on the photochemistry of OsH_4P_3 [4,5]. including the first observation of a unique equilibrium in which ligand addition/loss competes with $Os\equiv Os$ bond breaking/making. Few examples exist of multiple bonding involving osmium [6,7].

(1)

Photolysis [8] of ~0.1 *M* benzene or THF solutions of OsH_4P_3 leads to a rather complex array of products (Scheme 1) which are best detected by ³¹P NMR. Conversion of a saturated THF solution (0.4 ml) is nearly com-

plete in 6 h. Only small amounts of free PMe_2Ph are detected, consistent with the co-production of the phosphine-rich product cis-OsH₂P₄ [4]. A

SCHEME J

major (~50% yield) product has ³¹P resonances at 0.6 ppm (intensity 1) and -26.7 ppm (intensity 2); these resonances are slightly broadened ($\Delta \nu_{1/2} \sim$ 15 Hz and 10 Hz, respectively), but show no resolvable structure. This compound has only very low solubility in nonreactive solvents, and red crystals are deposited from photolyzed solutions. The results of a crystal structure determination [9] (Fig. 1) reveal the product to be Os₂(μ -H)₂H₂P₆, with a *fac*-OsH₃P₃ geometry at each metal center [10]. A metal-metal double bond, influenced by the presence of two bridging hydrogens, is required if

Fig. 1. The inner coordination sphere of $Os_2H_4(PMe_2Ph)_6$. The molecule resides on a crystallographic center of symmetry. Bond lengths (Å): Os-Os' 2.818(1), Os-P(2) 2.261(3), Os-P(3) 2.257(3), Os-P(4) 2.340(3), $Os-H_t = 1.61(9)$, $Os-H_b = 1.59(10)$, $Os-H'_b = 2.18(10)$. Selected bond angles (°): P(4)-Os-P(2) 100.2(1), P(4)-Os-P(3) 94.5(1), P(2)-Os-P(3) 94.4(1), $H_t-Os-P(4)$ 172(3), $H_t-Os-P(2)$ 87(3), $H_t-Os-P(3)$ 81(3), H_t-Os-H_b 89(4), $Os-H_b-Os'$ 96(5).

the osmium centers are to achieve an 18-electron count. The Os=Os bond length, 2.818(1) Å, is virtually identical to the distance of an analogous Ru=Ru bond (2.811(4) Å) [11].

In contrast to the situation with $\text{ReH}_5P_3[1,2]$, evidence points to reductive elimination of H₂ as the primary photochemical event for OsH_4P_3 . Thus, no photodimerization occurs if a benzene solution of OsH_4P_3 is irradiated in the presence of three equivalents of PMe_2Ph ; instead, cis- OsH_2P_4 is the only product in such an experiment. This is consistent with phosphine scavenging of a primary photoproduct of formula OsH_2P_3 , a reactivity pattern which partially (vide infra) explains the formation of cis- OsH_2P_4 when pure OsH_4P_3 is photolyzed in solution. Moreover, photolysis under 65 atm H₂ completely halts all the conversions shown in Scheme 1. The 16-electron transient OsH_2P_3 also effects exchange of metal-bound hydrogen with C₆D₆ during photolysis experiments; 90% of the Os—H has become Os—D after 1 h of irradiation.

The production of OsH_2P_4 even in the absence of added PMe_2Ph raises the question of the source of this ligand; there are no insoluble "decomposition products" in this reaction. The ³¹P{¹H} NMR spectrum [12] of photolyzed solutions also shows a product with an A_2X_3 phosphorus spin system (J 5 Hz). Each of these phosphorus resonances becomes a doublet (apparent $J(P-H) \approx 20 \text{ Hz}$) of multiplets when proton decoupling is limited to the region downfield of TMS; hydride ligands are therefore present in this complex. Three separate efforts to crystallize this complex gave crystals which were shown by cell constant measurements to be $Os_2H_4P_6$. This A_2X_3 compound can be converted cleanly and completely to $Os_2H_4P_6$ by treatment of the mixture of photolysis products with free PMe_2Ph . If this solution is then evaporated to dryness and held at ~0.02 mmHg for 12 h to pump off the liquid phosphine, the sample dissolves to give a ³¹P spectrum in which the A_2X_3 pattern again accompanies the resonances of $Os_2H_4P_6$. This is consistent with the occurrence of the equilibrium in eq. 2. The effect of entropy on the equilibrium

$$Os_2H_4P_6 \Leftrightarrow Os_2H_4P_5 + P$$

can also be demonstrated. A saturated benzene solution containing only $Os_2H_4P_6$, $Os_2H_4P_5$ and the equilibrium stoichiometry of free P at 25°C was heated to 80°C in an NMR probe; prompt recording of the ³¹P NMR spectrum at 80°C showed only $Os_2H_4P_5$ and (in increased amounts) free P. The ³¹P NMR spectrum of this solution, recorded immediately upon returning the probe and sample to 25°C showed some growth of $Os_2H_4P_6$; after 24 h, the original equilibrium concentrations had been restored. Low temperature ³¹P NMR spectra show little change in concentration from the nearly equal amounts of $Os_2H_4P_6$ and $Os_2H_4P_5$ found at 25°C, due to the slow rate of equilibration below 25°C.

(2)

Reaction 2 is the first case of reversible addition/elimination (25°C) of a two-electron ligand to a polyhydride accompanied by a double/triple metalmetal bond conversion. In two double/single bond conversions reported earlier [13,14], ligand addition converts a bridging hydride to a terminal position. In the absence of definitive spectroscopic or diffraction evidence for the structure of $Os_2H_4P_5$, we have explored indirect methods. We have synthesized, according to eq. 3, a complex of stoichiometry related to $Os_2H_4P_5$. The

$$Os_2H_4P_6 + HBF_4 \cdot Et_2O \rightarrow [Os_2H_3P_6]BF_4 + H_2$$
(3)

crystal structure [15] of the cation in this salt (Fig. 2) shows face-sharing octahedra, with an Os/Os distance (2.558(1) Å), sufficiently shorter than that in $Os_2H_4P_6$ to indicate the $Os\equiv Os$ triple bond needed to give a 36 valence electron count to the cation. The observation of a ³¹P doublet [16] when only the μ -H ligands are allowed to couple indicates that internal rotation of the $Os_2H_3P_6$ skeleton is not rapid at room temperature.

Fig. 2. The inner coordination sphere of $Os_2H_3(PMe_2Ph)_6^+$. Bond lengths (Å): Os(1)-Os(2) 2.558(1), Os-P (average) 2.291(4), Os-H (average) 1.75(11). P-Os-P angles average 93.4(1)° and transoid P-Os-H angles average 165(3)°. $Os(1)-(\mu-H)-Os(2)$ (average) 95(5)°, H-Os-H (average) 72(5)°.

We suggest that $Os_2H_4P_5$, a formal analog of $Os_2H_3P_6^+$ (replace H⁻ by P in the former), has a structure (II) derived from that of the isoelectronic cation.

The 5 Hz coupling constant in the A_2X_3 pattern is assigned as averaged end-toend $P_A - P_X$ coupling under conditions where an intramolecular process averages the three phosphorus nuclei of the OsP₃ group.

Photocondensation of fragments derived from OsH₄P₃ occurs by reductive

elimination of H_2 and cannot be achieved by thermal methods [17]. It is selective in producing dimers and not higher clusters (e.g. $Os_4H_4P_{12}$), and it thus provides access to a substantial array of Os—Os multiple bonds. The neutral ligand dissociation and accompanying Os=Os \rightarrow Os≡Os transformation of eq. 2 may provide applications in stoichiometric or catalytic substrate modification.

Acknowledgment. This work was supported by the National Science Foundation (Grant CHE 80-06331) and the M.H. Wrubel Computer Center. We thank Scott Horn for skilled technical assistance.

References

- 1 M.A. Green, J.C. Huffman and K.G. Caulton, J. Am. Chem. Soc., 103 (1981) 695.
- 2 D.A. Roberts and G.L. Geoffroy, J. Organometal. Chem., 214 (1981) 221.
- 3 G.L. Geoffroy, and M.S. Wrighton, Organometallic Photochemistry, Academic Press, New York, 1979, Chapter 7.
- 4 (a) P.G. Douglas and B.L. Shaw, J. Chem. Soc. A, (1970) 334; (b) B. Bell, J. Chatt, and G.L. Leigh, J. Chem. Soc., Dalton Trans., (1973) 997. This compound is separable from other photoproducts since it has greater solubility in hydrocarbon solvents.
- 5 Low temperature proton NMR (two equally intense hydride resonances, -8.9 and -9.78 at 361 MHz) and ³¹P $\{^{I}H\}$ NMR (2/1 broad signals at -30.5 and -33.1 at 146 MHz) both at -120°C in toluene- d_8 / CF₂Cl₂, are consistent with a pentagonal bipyramidal solution structure, with two axial and one equatorial phosphine. This structure was found in the solid state by neutron diffraction: D.W. Hart, R. Bau, and T.F. Koetzle, J. Am. Chem. Soc., 99 (1977) 7557.
- 6 F.A. Cotton and J.L. Thompson, J. Am. Chem. Soc., 102 (1980) 6437.
- 7 T.A. Stephenson, D.A. Tocher, and M.D. Walkinshaw, J. Organometal. Chem., 232 (1982) C51.
- 8 The lowest energy electronic absorption of OsH_4P_3 (λ_{max} 282 nm, $\epsilon = 5400$) necessitates the use of quartz glassware. Irradiations were carried out with medium pressure mercury lamps. Dinitrogen does not interfere.
- 9 Crystallographic data (-165°C): a 11.809(5), b 18.355(9), c 12.494(6) Å, β 116.64(2)°, V 2420.5 Å³, Z = 2 in space group $P2_1/a$; R(F) 4.7%, $R_W(F)$ 4.1% for 2613 observed ($F_O > 2.33 \sigma(F_O)$) and absorption-corrected reflections using anisotropic temperature factors for all non-hydrogen atoms. All hydrogens were refined isotropically. For full details, request Molecular Structure Center Report No. 82004 from the Chemistry Library, Indiana University.
- 10 ¹H NMR (360 MHz at 23°C in toluene-d_g): In addition to aromatic resonances, δ 1.70 (br. s., int. 1, PMe), δ 1.48 (br. s., int. 2, PMe), -13.6 (br. multiplet) ppm.
- 11 R.A. Jones, G. Wilkinson, I.J. Colquohoun, W. McFarlane, A.M.R. Gales, and M.B. Hursthouse, J. Chem. Soc., Dalton, Trans. (1980) 2480.
- 12 40.5 MHz ³¹P $\{^{1}H\}$ NMR spectrum in toluene- $d_{g}: \delta -14.7$ (q, J 5 Hz), -19.0 (t, J 5 Hz) ppm; 360 MHz ¹H NMR: in addition to aromatic resonances, 1.88 (two overlapping doublets, 12H, CH₃), 1.47 (d, J 7 Hz, 18H, CH₃), -8.95 (br, apparent doublet, OS-H).
- 13 M.J. Mays, D.W. Prest, and P.R. Raithby, J. Chem. Soc., Chem. Commun., (1980) 171.
- 14 (a) A.J. Deeming and S. Hasso, J. Organometal. Chem., 88 (1975) C21; (b) J.R. Shapley, J.B. Keister, M.R. Churchill, and B.G. DeBoer, J. Am. Chem. Soc., 97 (1975) 4145.
- 15 Crystallographic data $(-165^{\circ}C)$ for $[Os_2H_3(PMe_2Ph)_6]Cl^{\circ}2.8CH_2Cl_2$: a 18.393(8), b 16.172(6), c 20.872(8) Å, β 105.05(2)°, V 5995.6 Å³, Z = 4 in space group P2, /n; R(F) 4.9%, $R_w(F)$ 4.6% for 4288 observed $(F_0 > 2.33 \sigma(F_0))$ and absorption-corrected reflections using anisotropic thermal parameters for all non-hydrogen atoms. All hydrogen atoms of the cation except H(1) were refined isotropically; H(1) refined towards a residual near Os(1) and the coordinates of H(1) were therefore taken from a final difference Fourier. For full details, request Molecular Structure Center Report No. 82005 from the Chemistry Library, Indiana University.
- No. 82005 from the Chemistry Library, Indiana University.
 16 Centered at -21.9 ppm with apparent ²J(P-H) 16 Hz. 360 MHz ¹H NMR (23°C in CD₂Cl₂): aromatic resonances plus δ 1.62 (br s, CH₃), -9.45 (v br s, Os-H) ppm.
- 17 Note that OsH₄P₃ does not react with added P at 25°C. After 20 h at 100°C, cis-OsH₂P₄ is produced. Note also that a benzene solution of OsH₄P₃ held at 100°C for 24 h shows (³¹P NMR) no trace of any reaction.